Fundamentals of Deep Learning (FDL)

 

Résumé du cours

Businesses worldwide are using artificial intelligence to solve their greatest challenges. Healthcare professionals use AI to enable more accurate, faster diagnoses in patients. Retail businesses use it to offer personalized customer shopping experiences. Automakers use it to make personal vehicles, shared mobility, and delivery services safer and more efficient. Deep learning is a powerful AI approach that uses multi-layered artificial neural networks to deliver state-of-the-art accuracy in tasks such as object detection, speech recognition, and language translation. Using deep learning, computers can learn and recognize patterns from data that are considered too complex or subtle for expert-written software.

In this workshop, you’ll learn how deep learning works through hands-on exercises in computer vision and natural language processing. You’ll train deep learning models from scratch, learning tools and tricks to achieve highly accurate results. You’ll also learn to leverage freely available, state-of-the-art pre-trained models to save time and get your deep learning application up and running quickly.

Moyens Pédagogiques :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Réalisation de la formation par un formateur agréé par l’éditeur
  • Formation réalisable en présentiel ou en distanciel
  • Mise à disposition de labs distants/plateforme de lab pour chacun des participants (si applicable à la formation)
  • Distribution de supports de cours officiels en langue anglaise pour chacun des participants
    • Il est nécessaire d'avoir une connaissance de l'anglais technique écrit pour la compréhension des supports de cours
Moyens d'évaluation :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
  • Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences

Pré-requis

An understanding of fundamental programming concepts in Python 3, such as functions, loops, dictionaries, and arrays; familiarity with Pandas data structures; and an understanding of how to compute a regression line.

Objectifs

By participating in this workshop, you’ll:

  • Learn the fundamental techniques and tools required to train a deep learning model
  • Gain experience with common deep learning data types and model architectures
  • Enhance datasets through data augmentation to improve model accuracy
  • Leverage transfer learning between models to achieve efficient results with less data and computation
  • Build confidence to take on your own project with a modern deep learning framework

Suite de parcours

Contenu

Introduction
  • Meet the instructor.
  • Create an account at courses.nvidia.com/join
The Mechanics of Deep Learning

Explore the fundamental mechanics and tools involved in successfully training deep neural networks:

  • Train your first computer vision model to learn the process of training.
  • Introduce convolutional neural networks to improve accuracy of predictions in vision applications.
  • Apply data augmentation to enhance a dataset and improve model generalization.
Pre-trained Models and Recurrent Networks

Leverage pre-trained models to solve deep learning challenges quickly. Train recurrent neural networks on sequential data:

  • Integrate a pre-trained image classification model to create an automatic doggy door.
  • Leverage transfer learning to create a personalized doggy door that only lets in your dog.
  • Train a model to autocomplete text based on New York Times headlines.
Final Project: Object Classification

Apply computer vision to create a model that distinguishes between fresh and rotten fruit:

  • Create and train a model that interprets color images.
  • Build a data generator to make the most out of small datasets.
  • Improve training speed by combining transfer learning and feature extraction.
  • Discuss advanced neural network architectures and recent areas of research where students can further improve their skills.
Final Review
  • Review key learnings and answer questions.
  • Complete the assessment and earn a certificate.
  • Complete the workshop survey.
  • Learn how to set up your own AI application development environment.

Prix & Delivery methods

Formation en ligne

Durée
1 jour

Prix
  • sur demande
Formation en salle équipée

Durée
1 jour

Prix
  • France : 1 100,– €

Agenda

Délai d’accès – inscription possible jusqu’à la date de formation
Instructor-led Online Training :   Cours en ligne avec instructeur
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).

Français

Fuseau horaire : Heure normale d'Europe centrale (HNEC)   ±1 heure

Formation en ligne Fuseau horaire : Heure normale d'Europe centrale (HNEC)
Formation en ligne Fuseau horaire : Heure d'été d'Europe centrale (HAEC)
Formation en ligne Fuseau horaire : Heure d'été d'Europe centrale (HAEC)
Formation en ligne Fuseau horaire : Heure d'été d'Europe centrale (HAEC)
Formation en ligne Fuseau horaire : Heure d'été d'Europe centrale (HAEC)
Formation en ligne Fuseau horaire : Heure normale d'Europe centrale (HNEC)

Anglais

6 heures de différence

Formation en ligne Fuseau horaire : Eastern Daylight Time (EDT)
Formation en ligne Fuseau horaire : Eastern Daylight Time (EDT)

7 heures de différence

Formation en ligne Fuseau horaire : Central Daylight Time (CDT)
Formation en ligne Fuseau horaire : Central Daylight Time (CDT)
Délai d’accès – inscription possible jusqu’à la date de formation
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).

Europe

Allemagne

Francfort
Berlin
Francfort

Si vous ne trouvez pas de date adéquate, n'hésitez pas à vérifier l'agenda de toutes nos formations FLEX internationales