Fundamentals of Accelerated Computing with OpenACC (FACO)

 

Résumé du cours

Learn the basics of OpenACC, a high-level programming language for programming on GPUs. This course is for anyone with some C/C++ of Fortran experience who is interested in accelerating the performance of their applications beyond the limits of CPU-only programming. In this course, you’ll learn:

  • How to profile and optimize your CPU-only applications to identify hot spots for acceleration
  • How to use OpenACC directives to GPU accelerate your codebase
  • How to optimize data movement between the CPU and GPU accelerator

Upon completion, you'll be ready to use OpenACC to GPU accelerate CPU-only applications.

Please note that once a booking has been confirmed, it is non-refundable. This means that after you have confirmed your seat for an event, it cannot be cancelled and no refund will be issued, regardless of attendance.

Moyens Pédagogiques :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Réalisation de la formation par un formateur agréé par l’éditeur
  • Formation réalisable en présentiel ou en distanciel
  • Mise à disposition de labs distants/plateforme de lab pour chacun des participants (si applicable à la formation)
  • Distribution de supports de cours officiels en langue anglaise pour chacun des participants
    • Il est nécessaire d'avoir une connaissance de l'anglais technique écrit pour la compréhension des supports de cours
Moyens d'évaluation :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
  • Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences

Pré-requis

  • Basic C/C++ or Fortran competency, including familiarity with variable types, loops, conditional statements, functions, and array manipulations.
  • No previous knowledge of GPU programming is assumed.

Objectifs

  • Profile and optimize your CPU-only applications to identify hot spots for acceleration.
  • Use OpenACC directives to GPU-accelerate your codebase.
  • Optimize data movement between the CPU and GPU accelerator.

Suite de parcours

Contenu

Introduction

  • Meet the instructor.
  • Create an account at courses.nvidia.com/join

Introduction to Parallel Programming

  • Learn about parallelism in a conceptual way, as well as how to express it with OpenACC. Topics that will be covered are as follows:
    • Introduction to parallelism
    • The goals of OpenACC
    • Basic parallelization of code using OpenACC

Profiling with OpenACC

  • Learn how to build and compile an OpenACC code, the importance of profiling, and how to use the NVIDIA Nsight™ Systems profiler. Topics that will be covered are as follows:
    • Compiling sequential and OpenACC code
    • The importance of code profiling
    • Profiling sequential and OpenACC multicore code
    • Technical introduction to the code used in introductory modules

Introduction to OpenACC Directives

  • Learn how to parallelize your code with OpenACC directives and understand the differences between parallel, kernel, and loop directives. Topics that will be covered are as follows:
    • The Parallel directive
    • The Kernels directive
    • The Loop directive

GPU Programming with OpenACC

  • Learn about the differences between GPUs and multicore CPUs, and manage memory with CUDA Unified Memory. Topics that will be covered are as follows:
    • Definition of a GPU
    • Basic OpenACC data management
    • CUDA Unified Memory
    • Profiling GPU applications

Data Management with OpenACC

  • Learn how to explicitly manage data movement with OpenACC data directives to reduce data transfers. Topics that will be covered are as follows:
    • OpenACC data directive/clauses
    • OpenACC structured data region
    • OpenACC unstructured data region
    • OpenACC update directive
    • Data management with C/C++ Structs/Classes

Loop Optimizations with OpenACC

  • Understand the various levels of parallelism on a GPU and learn ways to extract more parallelism with OpenACC by optimizing loops in your code. Topics that will be covered are as follows:
    • Seq/Auto clause
    • Independent clause
    • Reduction clause
    • Collapse clause
    • Tile clause
    • Gang, Worker, Vector

Final Review

  • Review key learnings and answer questions.
  • Complete the assessment and earn a certificate.
  • Complete the workshop survey.

Prix & Delivery methods

Formation en ligne

Durée
1 jour

Prix
  • US $ 500,–

Actuellement aucune session planifiée