Train and deploy a machine learning model with Azure Machine Learning (DP-3007)

 

Course Overview

To train a machine learning model with Azure Machine Learning, you need to make data available and configure the necessary compute. After training your model and tracking model metrics with MLflow, you can decide to deploy your model to an online endpoint for real-time predictions. Throughout this learning path, you explore how to set up your Azure Machine Learning workspace, after which you train and deploy a machine learning model.

Moyens Pédagogiques :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Réalisation de la formation par un formateur agréé par l’éditeur
  • Formation réalisable en présentiel ou en distanciel
  • Mise à disposition de labs distants/plateforme de lab pour chacun des participants (si applicable à la formation)
  • Distribution de supports de cours officiels en langue anglaise pour chacun des participants
    • Il est nécessaire d'avoir une connaissance de l'anglais technique écrit pour la compréhension des supports de cours
Moyens d'évaluation :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
  • Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences

Course Content

  • Make data available in Azure Machine Learning
  • Work with compute targets in Azure Machine Learning
  • Work with environments in Azure Machine Learning
  • Run a training script as a command job in Azure Machine Learning
  • Track model training with MLflow in jobs
  • Register an MLflow model in Azure Machine Learning
  • Deploy a model to a managed online endpoint

Prix & Delivery methods

Formation en ligne

Durée
1 jour

Prix
  • sur demande
Formation en salle équipée

Durée
1 jour

Prix
  • sur demande

Agenda

Délai d’accès – inscription possible jusqu’à la date de formation
Date garantie :   Fast Lane s’engage à mettre en œuvre les formations garanties quelque soit le nombre de participants, en dehors des cas de force majeurs ou d’événements exceptionnels, comme un accident ou un maladie de l’instructeur.
Instructor-led Online Training :   Cours en ligne avec instructeur
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).

Anglais

Fuseau horaire : Heure normale d'Europe centrale (HNEC)   ±1 heure

Formation en ligne Fuseau horaire : Greenwich Mean Time (GMT) garanti !
Formation en ligne Fuseau horaire : Greenwich Mean Time (GMT)
Formation en ligne Fuseau horaire : British Summer Time (BST)
Formation en ligne Fuseau horaire : Greenwich Mean Time (GMT)

6 heures de différence

Formation en ligne Fuseau horaire : Eastern Daylight Time (EDT)
Formation en ligne Fuseau horaire : Eastern Daylight Time (EDT)

7 heures de différence

Formation en ligne Fuseau horaire : Central Daylight Time (CDT)
Formation en ligne Fuseau horaire : Central Daylight Time (CDT)
Formation en ligne Fuseau horaire : Central Daylight Time (CDT)
Formation en ligne Fuseau horaire : Central Daylight Time (CDT)

9 heures de différence

Formation en ligne Fuseau horaire : Pacific Standard Time (PST)
Formation en ligne Fuseau horaire : Pacific Standard Time (PST)
Formation en ligne Fuseau horaire : Pacific Standard Time (PST)
Formation en ligne Fuseau horaire : Pacific Standard Time (PST)
Délai d’accès – inscription possible jusqu’à la date de formation
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).

Europe

Allemagne

Francfort
Munich
Berlin
Berlin
Munich

Suisse

Zurich
Zurich
Zurich
Zurich
Zurich
Zurich

Si vous ne trouvez pas de date adéquate, n'hésitez pas à vérifier l'agenda de toutes nos formations FLEX internationales