Course Overview
To train a machine learning model with Azure Machine Learning, you need to make data available and configure the necessary compute. After training your model and tracking model metrics with MLflow, you can decide to deploy your model to an online endpoint for real-time predictions. Throughout this learning path, you explore how to set up your Azure Machine Learning workspace, after which you train and deploy a machine learning model.
Moyens d'évaluation :
- Quiz pré-formation de vérification des connaissances (si applicable)
- Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
- Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences
Course Content
- Make data available in Azure Machine Learning
- Work with compute targets in Azure Machine Learning
- Work with environments in Azure Machine Learning
- Run a training script as a command job in Azure Machine Learning
- Track model training with MLflow in jobs
- Register an MLflow model in Azure Machine Learning
- Deploy a model to a managed online endpoint
Moyens Pédagogiques :