Serverless Data Processing with Dataflow (SDPF)

 

Résumé du cours

This training is intended for big data practitioners who want to further their understanding of Dataflow in order to advance their data processing applications. Beginning with foundations, this training explains how Apache Beam and Dataflow work together to meet your data processing needs without the risk of vendor lock-in.The section on developing pipelines covers how you convert your business logic into data processing applications that can run on Dataflow. This training culminates with a focus on operations, which reviews the most important lessons for operating a data application on Dataflow, including monitoring, troubleshooting, testing, and reliability.

Moyens Pédagogiques :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Réalisation de la formation par un formateur agréé par l’éditeur
  • Formation réalisable en présentiel ou en distanciel
  • Mise à disposition de labs distants/plateforme de lab pour chacun des participants (si applicable à la formation)
  • Distribution de supports de cours officiels en langue anglaise pour chacun des participants
    • Il est nécessaire d'avoir une connaissance de l'anglais technique écrit pour la compréhension des supports de cours
Moyens d'évaluation :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
  • Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences

A qui s'adresse cette formation

  • Data engineer.
  • Data analysts and data scientists aspiring to develop data engineering skills

Certifications

Cette formation prépare à la/aux certifications:

Pré-requis

To get the most out of this course, participants should have completed the following courses:

  • Building Batch Data Pipelines
  • Building Resilient Streaming Analytics Systems

Objectifs

  • Demonstrate how Apache Beam and Dataflow work together to fulfill your organization’s data processing needs.
  • Summarize the benefits of the Beam Portability Framework and enable it for your Dataflow pipelines.
  • Enable Shuffle and Streaming Engine, for batch and streaming pipelines respectively, for maximum performance.
  • Enable Flexible Resource Scheduling for more cost-efficient performance.
  • Select the right combination of IAM permissions for your Dataflow job.
  • Implement best practices for a secure data processing environment.
  • Select and tune the I/O of your choice for your Dataflow pipeline.
  • Use schemas to simplify your Beam code and improve the performance of your pipeline.
  • Develop a Beam pipeline using SQL and DataFrames.
  • Perform monitoring, troubleshooting, testing and CI/CD on Dataflow pipelines.

Suite de parcours

Contenu

Module 1: Introduction
  • Introduce the course objectives.
  • Demonstrate how Apache Beam and Dataflow work together to fulfill your organization’s data processing needs.
Module 2: Beam Portability
  • Summarize the benefits of the Beam Portability Framework.
  • Customize the data processing environment of your pipeline using custom containers.
  • Review use cases for cross-language transformations.
  • Enable the Portability framework for your Dataflow pipelines.
Module 3: Separating Compute and Storage with Dataflow
  • Enable Shuffle and Streaming Engine, for batch and streaming pipelines respectively, for maximum performance.
  • Enable Flexible Resource Scheduling for more cost-efficient performance.
Module 4: IAM, Quotas, and Permissions
  • Select the right combination of IAM permissions for your Dataflow job.
  • Determine your capacity needs by inspecting the relevant quotas for your Dataflow jobs.
Module 5: Security
  • Select your zonal data processing strategy using Dataflow, depending on your data locality needs.
  • Implement best practices for a secure data processing environment.
Module 6: Beam Concepts Review
  • Review main Apache Beam concepts (Pipeline, PCollections, PTransforms, Runner, reading/writing, Utility PTransforms, side inputs), bundles and DoFn Lifecycle.
Module 7: Windows, Watermarks, Triggers
  • Implement logic to handle your late data.
  • Review different types of triggers.
  • Review core streaming concepts (unbounded PCollections, windows).
Module 8: Sources and Sinks
  • Write the I/O of your choice for your Dataflow pipeline.
  • Tune your source/sink transformation for maximum performance.
  • Create custom sources and sinks using SDF.
Module 9: Schemas
  • Introduce schemas, which give developers a way to express structured data in their Beam pipelines.
  • Use schemas to simplify your Beam code and improve the performance of your pipeline.
Module 10: State and Timers
  • Identify use cases for state and timer API implementations.
  • Select the right type of state and timers for your pipeline.
Module 11: Best Practices
  • Implement best practices for Dataflow pipelines.
Module 12: Dataflow SQL and DataFrames
  • Develop a Beam pipeline using SQL and DataFrames.
Module 13: Beam Notebooks
  • Prototype your pipeline in Python using Beam notebooks.
  • Use Beam magics to control the behavior of source recording in your notebook.
  • Launch a job to Dataflow from a notebook.
Module 14: Monitoring
  • Navigate the Dataflow Job Details UI.
  • Interpret Job Metrics charts to diagnose pipeline regressions.
  • Set alerts on Dataflow jobs using Cloud Monitoring.
Module 15: Logging and Error Reporting
  • Use the Dataflow logs and diagnostics widgets to troubleshoot pipeline issues.
Module 16: Troubleshooting and Debug
  • Use a structured approach to debug your Dataflow pipelines.
  • Examine common causes for pipeline failures.
Module 17: Performance
  • Understand performance considerations for pipelines.
  • Consider how the shape of your data can affect pipeline performance.
Module 18: Testing and CI/CD
  • Testing approaches for your Dataflow pipeline.
  • Review frameworks and features available to streamline your CI/CD workflow for Dataflow pipelines.
Module 19: Reliability
  • Implement reliability best practices for your Dataflow pipelines.
Module 20: Flex Templates
  • Using flex templates to standardize and reuse Dataflow pipeline code.
Module 21: Summary
  • Summary.

Prix & Delivery methods

Formation en ligne

Durée
3 jours

Prix
  • 2 080,– €
Formation en salle équipée

Durée
3 jours

Prix
  • France : 2 080,– €

Actuellement aucune session planifiée