Building Batch Data Pipelines on Google Cloud (BBDP)

 

Course Overview

Data pipelines typically fall under one of the Extract and Load (EL), Extract, Load and Transform (ELT) or Extract, Transform and Load (ETL) paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud for data transformation including BigQuery, executing Spark on Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Dataflow. Learners get hands-on experience building data pipeline components on Google Cloud using Qwiklabs.

Moyens Pédagogiques :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Réalisation de la formation par un formateur agréé par l’éditeur
  • Formation réalisable en présentiel ou en distanciel
  • Mise à disposition de labs distants/plateforme de lab pour chacun des participants (si applicable à la formation)
  • Distribution de supports de cours officiels en langue anglaise pour chacun des participants
    • Il est nécessaire d'avoir une connaissance de l'anglais technique écrit pour la compréhension des supports de cours
Moyens d'évaluation :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
  • Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences

Who should attend

This course is intended for developers who are responsible for designing pipelines and architectures for data processing.

Certifications

This course is part of the following Certifications:

Prerequisites

  • Experience with data modeling and ETL (extract, transform, load) activities.
  • Experience with developing applications by using a common programming language such as Python or Java.

Course Objectives

  • Review different methods of data loading: EL, ELT and ETL and when to use what.
  • Run Hadoop on Dataproc, use Cloud Storage, and optimize Dataproc jobs.
  • Build your data processing pipelines by using Dataflow.
  • Manage data pipelines with Data Fusion and Cloud Composer

Prix & Delivery methods

Formation en ligne

Durée
1 jour

Prix
  • sur demande
Formation en salle équipée

Durée
1 jour

Prix
  • sur demande

Agenda

Délai d’accès – inscription possible jusqu’à la date de formation
Instructor-led Online Training :   Cours en ligne avec instructeur
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).

Anglais

Fuseau horaire : Heure normale d'Europe centrale (HNEC)   ±1 heure

Formation en ligne Fuseau horaire : Heure d'été d'Europe centrale (HAEC)
Formation en ligne Fuseau horaire : Heure normale d'Europe centrale (HNEC)
Délai d’accès – inscription possible jusqu’à la date de formation
Formation en mode FLEX, à la fois à distance et en présentiel. Tous nos cours FLEX sont aussi des ILO (Instructor-Led Online).

Europe

Allemagne

Berlin
Francfort
Hambourg

Si vous ne trouvez pas de date adéquate, n'hésitez pas à vérifier l'agenda de toutes nos formations FLEX internationales