Moyens d'évaluation :
- Quiz pré-formation de vérification des connaissances (si applicable)
- Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
- Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences
A qui s'adresse cette formation
- Developers
- Data Scientists
Certifications
Cette formation prépare à la/aux certifications:
Pré-requis
- Familiarity with Python programming language
- Basic understanding of Machine Learning
Objectifs
- Prepare a dataset for training
- Train and evaluate a Machine Learning model
- Automatically tune a Machine Learning model
- Prepare a Machine Learning model for production
- Think critically about Machine Learning model results
Suite de parcours
Contenu
In this intermediate-level course, individuals learn how to solve a real-world use case with Machine Learning (ML) and produce actionable results using Amazon SageMaker. This course walks through the stages of a typical data science process for Machine Learning from analyzing and visualizing a dataset to preparing the data, and feature engineering. Individuals will also learn practical aspects of model building, training, tuning, and deployment with Amazon SageMaker. Real life use cases include customer retention analysis to inform customer loyalty programs.
Moyens Pédagogiques :