Model Parallelism: Building and Deploying Large Neural Networks (MPBDLNN)

 

Résumé du cours

Very large deep neural networks (DNNs), whether applied to natural language processing (e.g., GPT-3), computer vision (e.g., huge Vision Transformers), or speech AI (e.g., Wave2Vec 2) have certain properties that set them apart from their smaller counterparts. As DNNs become larger and are trained on progressively larger datasets, they can adapt to new tasks with just a handful of training examples, accelerating the route toward general artificial intelligence. Training models that contain tens to hundreds of billions of parameters on vast datasets isn’t trivial and requires a unique combination of AI, high-performance computing (HPC), and systems knowledge.

Please note that once a booking has been confirmed, it is non-refundable. This means that after you have confirmed your seat for an event, it cannot be cancelled and no refund will be issued, regardless of attendance.

Moyens Pédagogiques :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Réalisation de la formation par un formateur agréé par l’éditeur
  • Formation réalisable en présentiel ou en distanciel
  • Mise à disposition de labs distants/plateforme de lab pour chacun des participants (si applicable à la formation)
  • Distribution de supports de cours officiels en langue anglaise pour chacun des participants
    • Il est nécessaire d'avoir une connaissance de l'anglais technique écrit pour la compréhension des supports de cours
Moyens d'évaluation :
  • Quiz pré-formation de vérification des connaissances (si applicable)
  • Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
  • Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences

Pré-requis

Familiarity with:

  • Good understanding of PyTorch
  • Good understanding of deep learning and data parallel training concepts
  • Practice with deep learning and data parallel are useful, but optional

Prix & Delivery methods

Formation en ligne

Durée
1 jour

Prix
  • US $ 500,–

Actuellement aucune session planifiée