Résumé du cours
Thanks to improvements in computing power and scientific theory, generative AI is more accessible than ever before. Generative AI plays a significant role across industries due to its numerous applications, such as creative content generation, data augmentation, simulation and planning, anomaly detection, drug discovery, personalized recommendations, and more. In this course, learners will take a deeper dive into denoising diffusion models, which are a popular choice for text-to-image pipelines.
Please note that once a booking has been confirmed, it is non-refundable. This means that after you have confirmed your seat for an event, it cannot be cancelled and no refund will be issued, regardless of attendance.
Moyens d'évaluation :
- Quiz pré-formation de vérification des connaissances (si applicable)
- Évaluations formatives pendant la formation, à travers les travaux pratiques réalisés sur les labs à l’issue de chaque module, QCM, mises en situation…
- Complétion par chaque participant d’un questionnaire et/ou questionnaire de positionnement en amont et à l’issue de la formation pour validation de l’acquisition des compétences
Pré-requis
- A basic understanding of Deep Learning Concepts.
- Familiarity with a Deep Learning framework such as TensorFlow, PyTorch, or Keras. This course uses PyTorch.
Objectifs
- Build a U-Net to generate images from pure noise
- Improve the quality of generated images with the denoising diffusion process
- Control the image output with context embeddings
- Generate images from English text prompts using the Contrastive Language—Image Pretraining (CLIP) neural network
Contenu
From U-Net to Diffusion
- Build a U-Net architecture.
- Train a model to remove noise from an image.
Diffusion Models
- Define the forward diffusion function.
- Update the U-Net architecture to accommodate a timestep.
- Define a reverse diffusion function.
Optimizations
- Implement Group Normalization.
- Implement GELU.
- Implement Rearrange Pooling.
- Implement Sinusoidal Position Embeddings.
Classifier-Free Diffusion Guidance
- Add categorical embeddings to a U-Net.
- Train a model with a Bernoulli mask.
CLIP
- Learn how to use CLIP Encodings.
- Use CLIP to create a text-to-image neural network.
Moyens Pédagogiques :